Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 206: 111140, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32858325

RESUMO

Although the toxicity of triclocarban at molecular level has been investigated, the metabolic networks involved in regulating the stress processes are not clear. Whether the cells would maintain specific phenotypic characteristics after triclocarban stress is also needed to be clarified. In this study, Escherichia coli was selected as a model to elucidate the cellular metabolism response associated with triclocarban stress and the recovery metabolic network of the triclocarban-treated cells using the proteomics and metabolomics approaches. Results showed that triclocarban caused systematic metabolic remodeling. The adaptive pathways, glyoxylate shunt and acetate-switch were activated. These arrangements allowed cells to use more acetyl-CoA and to reduce carbon atom loss. The upregulation of NH3-dependent NAD+ synthetase complemented the NAD+ consumption by catabolism, maintaining the redox balance. The synthesis of 1-deoxy-D-xylulose-5-phosphate was suppressed, which would affect the accumulation of end products of its downstream pathway of isoprenoid synthesis. After recovery culture for 12 h, the state of cells returned to stability and the main impacts on metabolic network triggered by triclocarban have disappeared. However, drug resistance caused by long-term exposure to environmentally relevant concentration of triclocarban is still worthy of attention. The present study revealed the molecular events under triclocarban stress and clarified how triclocarban influence the metabolic networks.


Assuntos
Anti-Infecciosos Locais/toxicidade , Carbanilidas/toxicidade , Escherichia coli/fisiologia , Redes e Vias Metabólicas , Acetatos/metabolismo , Carbono/metabolismo , Glioxilatos , Metabolômica , Proteômica
2.
J Hazard Mater ; 388: 121737, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31796352

RESUMO

Although bisphenol A (BPA) can be transformed by CYP450, the metabolic networks involved in regulating the transformation processes are not clear. In this study, Escherichia coli harboring the gene encoding CYP450 was used as a model to elucidate the BPA degradation pathway and the associated metabolic network using a proteomic approach. The results showed that CYP450 promotes the transformation of BPA, generating 1,2-bis(4-hydroxyphenyl)-2-propanol and 2,2-bis(4-hydroxyphenyl)-1-propanol, with hydroquinone and 4-(2-hydroxypropan-2-yl)phenol formed in another pathway. The DNA adducts formed by 1,4-benzoquinone were reduced, and CYP450 played a positive role in cellular homeostasis by promoting the transformation of BPA and mismatch repair. An increase in the synthesis of cell membrane lipids was observed after dislodging BPA. BPA disturbed folate metabolism by decreasing the abundance of dihydrofolate reductase, which inhibited microbial metabolism in the absence of CYP450. The findings of this study revealed the molecular mechanism associated with the metabolic network responsible for pollutant tolerance and degradation.


Assuntos
Bacillus thuringiensis/enzimologia , Compostos Benzidrílicos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Poluentes Ambientais/metabolismo , Escherichia coli/enzimologia , Redes e Vias Metabólicas , Fenóis/metabolismo , Bacillus thuringiensis/genética , Compostos Benzidrílicos/toxicidade , Biodegradação Ambiental , Biotransformação , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/genética , Poluentes Ambientais/toxicidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Viabilidade Microbiana/efeitos dos fármacos , Fenóis/toxicidade , Plasmídeos
3.
Sci Total Environ ; 708: 135199, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31780180

RESUMO

The effects of hexabromocyclododecane (HBCD) on the relationship between physiological responses and metabolic networks remains unclear. To this end, cellular growth, apoptosis, reactive oxygen species, exometabolites and the proteome of Escherichia coli were investigated following exposure to 0.1 and 1 µM HBCD. The results showed that although there were no significant changes in the pH value, apoptosis and reactive oxygen species under HBCD stress, cell growth was inhibited. The metabolic network formed by glycolysis, oxidative phosphorylation, amino acids biosynthesis, membrane proteins biosynthesis, ABC transporters, glycogen storage, cell recognition, compound transport and nucleotide excision repair was disrupted. Cell chemotaxis and DNA damage repair were the effective approaches to alleviate HBCD stress. This work improves our understanding of HBCD toxicity and provides insight into the toxicological mechanism of HBCD at the molecular and network levels.


Assuntos
Escherichia coli , Apoptose , Retardadores de Chama , Hidrocarbonetos Bromados , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...